Imre Bartos homepage

Imre Bartos
Assistant Professor
Department of Physics
University of Florida
2025 Physics Bldg. 2001 Museum Road
Gainesville, FL 32611-8440
Email: imrebartos at


I study extreme cosmic events mainly related to the formation and evolution of black holes. In particular, I am interested in multi-messenger astrophysics, which aims to combine multiple cosmic messengers--gravitational waves, neutrinos, gamma-rays, etc., to learn more about astrophysical events.

I am a member of the LIGO Scientific Collaboration, discovering gravitational waves from colliding black holes since 2015 and colliding neutron stars since 2017. I am also a member of the IceCube-Gen2 Collaboration, which is developing the next generation of neutrino observatories to be located deep within the ice of Antarctica. I also work on the biological applications of optics to better understand neurological diseases.


List of LIGO collaboration papers: [link] 


64. AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers Y. Yang, Bartos, Z. Haiman, B. Kocsis, Z. Marka, N.C. Stone, S. Marka arXiv, 1903.01405 (2019) [http] 63. Localization of Binary Black-Hole Mergers with Known Inclination K.R. Corley, I. Bartos, L.P. Singer, A.R. Williamson, Z. Haiman, B. Kocsis, S. Nissanke, Z. Marka, S. Marka arXiv, 1902.02797 (2019) [http] 62. Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA) with Gravitational-Wave and High-Energy Neutrino Candidates S. Countryman, A. Keivani, I. Bartos, Z. Marka, T. Kintscher, R. Corley, E. Blaufuss, C. Finley, S. Marka arXiv, 1901.05486 (2019) [http] 61. Search for Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during its first Observing Run, ANTARES and IceCube ANTARES, IceCube, LIGO, Virgo Collaborations ApJ, 870:134 (2019) [http] + IceCube News 60. Radio Forensics Could Unmask Nearby Off-axis Gamma-ray Bursts I. Bartos, K.H. Lee, A. Corsi, Z. Marka, S. Marka MNRAS accepted (2019) [http]


59. Multimessenger Implications of AT2018cow: High-Energy Cosmic Ray and Neutrino Emissions from Magnetar-Powered Super-Luminous Transients K. Fang, B.D. Metzger, K. Murase, I. Bartos, K. Kotera arXiv 1812.11673 (2018) [http] 58. Bayesian Multi-Messenger Search Method for Common Sources of Gravitational Waves and High-Energy Neutrinos I. Bartos, D. Veske, A. Keivani, Z. Marka, S. Countryman, E. Blaufuss, C. Finley, S. Marka arXiv 1810.11467 (2018) [http] 57. A gut microbial factor modulates locomotor behavior in Drosophila C.E. Schretter, J. Vielmetter, I. Bartos, Z. Marka, S. Marka, S. Argade, S.K. Mazmanian Nature (2018) [http] + Nature News and Views 56. Observational consequences of structured jets from neutron star mergers in the local Universe N. Gupte, I. Bartos arXiv, 1808.06238 (2018) [http] 55. Trans-Ejecta High-Energy Neutrino Emission from Binary Neutron Star Mergers S.S. Kimura, K. Murase, I. Bartos, K. Ioka, I.S. Heng, P. Meszaros PRD, 98, 4 (2018) [http] 54. Infused Ice can Multiply IceCube's Sensitivity I. Bartos, Z. Marka, S. Marka Nature Communications, 9:1236 (2018) [http] 53. Strategies for the Follow-up of Gravitational Wave Transients with the Cherenkov Telescope Array I. Bartos, T. Di Girolamo, J.R. Gair, M. Hendry, I.S. Heng, T.B. Humensky, S. Marka, Z. Marka, C. Messenger, R. Mukherjee, D. Nieto, P. O'Brien, M. Santander MNRAS 477, 639–647 (2018) [http]


52. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory ANTARES, IceCube, Pierre Auger, LIGO Scientific and Virgo Collaborations ApJ Lett. 850:L35 (2017) [http] + IceCube News 51. Multimessenger Prospects with Gravitational Waves and Neutrinos after LIGO's First Discovery I. Bartos for the LIGO Scientific Collaboration J. Phys.: Conf. Ser. 888, 012001 (2017) [http] 50. Environmental Stress Causes Lethal Neuro-Trauma during Asymptomatic Viral Infections J. Chow, Z. Marka, I. Bartos, S. Marka, J.C. Kagan Cell Host & Microbe 22, 48-60 (2017) [http] 49. Multimessenger Astronomy I. Bartos, M. Kowalski ebook, Physics World Discovery (2017) [http] 48. Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration PRD 96, 022005 (2017) [http] + IceCube News 47. Gravitational-Wave Localization Alone Probes AGN Origin of Stellar-Mass Black Hole Mergers I. Bartos, Z. Haiman, Z. Marka, B.D. Metzger, N.C. Stone, S. Marka Nature Communications 8, 831 (2017) [http] 46. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei I. Bartos, B. Kocsis, Z. Haiman, S. Marka ApJ 835:165 (2017) [http] 45. Prospects of Establishing the Origin of Cosmic Neutrinos using Source Catalogs I. Bartos, M. Ahrens, C. Finley, S. Marka Phys. Rev. D 96, 023003 (2017) [http]


44. A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates M. Charisi, I. Bartos, Z. Haiman, A.M. Price-Whelan, M.J. Graham, E.C. Bellm, R.R. Laher and S. Marka MNRAS (2016) [http] 43. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube Antares Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration PRD 93, 122010 (2016) [http] + LIGO science summary + IceCube News + Editor's Suggestion 42. Detector Optimization Figures-of-merit for IceCube's High-energy Extension I. Bartos Astropart. Phys., 75 55-59 (2016) [http] 41. James Webb Space Telescope can Detect Kilonovae in Gravitational Wave Follow-up Search I. Bartos, T.L. Huard, S. Marka ApJ, 816, 61 (2016) [http] + astrobites + AAS Nova Highlights 40. Novae as Tevatrons: Prospects for CTA and IceCube B.D. Metzger, D. Caprioli, I. Vurm, A. M. Beloborodov, I. Bartos, A. Vlasov MNRAS 457 (2): 1786-1795 (2016) [http] 39. Multi-Messenger Tests for Fast-Spinning Newborn Pulsars Embedded in Stripped-Envelope Supernovae K. Kashiyama, K. Murase, I. Bartos, K. Kiuchi, R. Margutti ApJ 818:94 (14pp) (2016) [http]


38. Constraining the Jet Structure of Gamma-Ray Bursts from Viewing Angle Observations N. Miller, S. Marka, I. Bartos arXiv:1511.00706 (2015) [http] 37. Spectral Decline of PeV Neutrinos from Starburst Galaxies I. Bartos, S. Marka arXiv:1509.00983 (2015) [http] 36. Beyond the Horizon Distance: LIGO-Virgo can Boost Gravitational Wave Detection Rates by Exploiting the Mass Distribution of Neutron Stars I. Bartos, S. Marka PRL 115, 231101 (2015) [http] 35. Quantification of gait parameters in freely walking rodents C.S. Mendes, I. Bartos, Z. Marka, T. Akay, S. Marka, and R.S. Mann BMC Biology 13:50 (2015) [http] + BioMed Central blog network 34. Galaxy Survey On The Fly: Prospects of Rapid Galaxy Cataloging to Aid the Electromagnetic Follow-up of Gravitational-wave Observations I. Bartos, A.P.S. Crotts, S. Marka ApJ Lett., 801:L1 (2015) [http] + astrobites 33. Multiple periods in the variability of the supermassive black hole binary candidate quasar PG1302-102? M. Charisi, I. Bartos, Z. Haiman, A.M. Price-Whelan, S. Marka MNRAS Lett. 454, L21-L25 (2015) [http] 32. Gamma-Ray and Hard X-Ray Emission from Pulsar-Aided Supernovae as a Probe of Particle Acceleration in Embryonic Pulsar Wind Nebulae K. Murase, K. Kashiyama, K. Kiuchi, I. Bartos ApJ, 805, 82 (2015) [http] 31. Catalog of Isolated Emission Episodes in Gamma-ray Bursts from Fermi, Swift and BATSE M. Charisi, S. Marka, I. Bartos MNRAS 448, 2624-2633 (2015) [http]


30. IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica IceCube-Gen2 Collaboration arXiv:1412.5106 (2014) [http] 29. Kinematic Responses to Changes in Walking Orientation and Gravitational Load in Drosophila melanogaster C.S. Mendes, S.V. Rajendren, I. Bartos, S. Marka, R.S. Mann PLoS ONE 9(10): e109204 (2014) [http] 28. Can a Single High-energy Neutrino from Gamma-ray Bursts be a Discovery? I. Bartos, S. Marka PRD 90, 101301(R) (2014) [http] 27. Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube IceCube Collaboration, the LIGO Scientific Collaboration and the Virgo Collaboration PRD 90, 102002 (2014) [http] + LIGO Science Summary + IceCube News 26. Cherenkov Telescope Array is Well Suited to Follow Up Gravitational Wave Transients I. Bartos et al. MNRAS 443, 738-749 (2014) [http]


25. Detection Prospects for GeV Neutrinos from Collisionally Heated Gamma-ray Bursts with IceCube/DeepCore I. Bartos, A. Beloborodov, K. Hurley, S. Márka PRL 110, 241101 (2013) [http] +Editor's Suggestion 24. Gas Cloud G2 can Illuminate the Black Hole Population near the Galactic Center I. Bartos, Z. Haiman, B. Kocsis, S. Márka PRL 110, 221102 (2013) [http] +Editor's Suggestion +Physics Synopsis +BBC + BBC Science Hour +NSF Highlights 23. Detecting Long-Duration Narrow-Band Gravitational Wave Transients Associated with Soft Gamma Repeater Quasi-Periodic Oscillations D. Murphy, M. Tse, P. Raffai, I. Bartos, R. Khan, Z. Márka, L. Matone, K. Redwine, S. Márka PRD 87, 103008 (2013) [http] 22. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster C.S. Mendes, I. Bartos, T. Akay, S. Márka, R.S. Mann eLIFE 2:e00231 (2013) [http] +Insight by R.L. Calabrese +Spoonful of Medicine (Nature Medicine) by E. Dolgin +Recommendation by A. Buschges 21. TOPICAL REVIEW: How Gravitational-wave Observations Can Shape the Gamma-ray Burst Paradigm I. Bartos, P. Brady, S. Márka CQG 30 123001 (2013) [http] +CQG Highlights of 2013-2014 20. The Astrophysical Multimessenger Observatory Network (AMON) M.W.E. Smith et al. Astropart. Phys. 45 (2013) 56-70 [http] 19. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos S. Ando et al. Rev. Mod. Phys. 85, 1401-1420 (2013) [http]


18. Probing the Structure of Jet-Driven Core-Collapse Supernova and Long GRB Progenitors with High Energy Neutrinos I. Bartos, B. Dasgupta, S. Márka PRD 86, 083007 (2012) [http] 17. Multimessenger Science Reach and Analysis Method for Common Sources of Gravitational Waves and High-energy Neutrinos B. Baret, I. Bartos (corresponding author), B. Bouhou, E. Chassande-Mottin et al. PRD 85, 103004 (2012) [http]


16. Multimessenger Sources of Gravitational Waves and High-energy Neutrinos: Science Reach and Analysis Method B. Baret, I. Bartos (corresponding author), B. Bouhou, E. Chassande-Mottin et al. Journal of Physics: Conference Series (Amaldi 9 / NRDA 2011) [http] 15. Opportunity to Test non-Newtonian Gravity Using Interferometric Sensors with Dynamic Gravity Field Generators P. Raffai, G. Szeifert, L. Matone, Y. Aso, I. Bartos, Z. Márka, F. Ricci, S. Márka PRD 84, 082002 (2011) [http] 14. Observational Constraints on Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos I. Bartos (corresponding author), C. Finley, A. Corsi, S. Márka Phys. Rev. Lett. 107, 251101 (2011) [http] 13. Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts B. Baret, I. Bartos (corresponding author), B. Bouhou, A. Corsi et al. Astropart. Phys., 35 1-7 (2011) [http]


12. The Advanced LIGO Timing System I. Bartos, R. Bork, M. Factourovich, J. Heefner, S. Márka, Z. Márka, Z. Raics, P. Schwinberg and D. Sigg CQG 27 084025 (2010) [http | pdf] 11. Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota J. Harms, F. Acernese, F. Barone, I. Bartos et al. CQG 27 225011 (2010) [http]


10. Joint Searches Between Gravitational-Wave Interferometers and High-Energy Neutrino Telescopes: Science Reach and Analysis Strategies V. van Elewyck, S. Ando, Y. Aso, B. Baret, M. Barsuglia, I. Bartos et al. International Journal of Modern Physics D, Volume 18, Issue 10, pp. 1655-1659 (2009) [http]


9. Fluctuation scaling in complex systems: Taylor's law and beyond Z. Eisler, I. Bartos, J. Kertész Advances in Physics. 57(1):89-142 (2008) [http]


8. Nonlinear statistics of daily temperature fluctuations reproduced in a laboratory experiment B. Gyüre, I. Bartos, I.M. Jánosi PRE, 76(3):037301-+ (2007) [http] 7. Side pressure anomalies in 2D packings of frictionless spheres I. Bartos, I.M. Jánosi Granular Matter, 9(1-2):81-86 (2007) [http]


6. Both introns and long 3'-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants S. Kertész, Z. Kerényi, Z. Mérai, I. Bartos, T. Pálfy, E. Barta and D. Silhavy, Nucl. Acids Res., 34(21):6147-6157 (2006) [http] 5. Nonlinear correlations of daily temperature records over land I. Bartos, I.M. Jánosi Nonlin. Processes Geophys., 13(5):571-576 (2006) [http] 4. Correlation properties of daily temperature anomalies over land A. Király, I. Bartos, I.M. Jánosi Tellus Series A, 58:593-600 (2006) [http] 3. Searching for Gravitational Waves (in Hungarian) P. Raffai, I. Bartos Kozepiskolai Matematikai es Fizikai Lapok (2006)


2. Long term correlations in the fluctuation of meteorological parameters (in Hungarian) I.M. Jánosi, I. Bartos, A. Király Meteorologiai tudomanyos napok, 31 (2005) [http] 1. Atmospheric response function over land: Strong asymmetries in daily temperature fluctuations I. Bartos, I.M. Jánosi Geophys. Res. Lett. 32:L23820 (2005) [http]


49.  Festive five: Physics World picks its favourite features from 2018 
       Physics World, Dec 2018 [link]

48.  Physicists Spot Four Black Hole Collisions, Including the Largest One Ever Recorded 
       Gizmodo, Dec 2018 [link]

47.  What Happens When Two Black Holes Collide? 
       Gizmodo, Dec 2018 [link]

46.  Cosmic Particle Accelerator (in Hungarian) 
       Termeszet Vilaga, Nov 2018 [link]

45.  The Universe has Two New Windows (in German) 
       Zeit Wissen, Nov/Dec 2018 [link]

44.  The New Era of Multimessenger Astronomy  
       Scientific American, May 2018 [link]

43.  The Hungarian Academy of Sciences - Hungarian American branch has formed  (in Hungarian), Apr 2018 [link]

42.  Astronomers Find Evidence of Thousands of Black Holes at the Center of Our Galaxy 
       Gizmodo, Apr 2018 [link]

41.  A new cosmic messenger 
       Feature, PhysicsWorld, Jan 2018 [link]
       + Physics World's five favourite features of 2018

40.  Szent-Gyorgyi Award Ceremony (TV, in Hungarian)
       ATV, Dec 2017 [link]

39.  Can Scientists Figure Out Where Colliding Black Holes Come From? 
       Gizmodo, Nov 2017 [link]

38.  Spectacular collision of two neutron stars observed for first time 
       Physics World, Oct 2017 [link]

37.  Colliding Neutron Star Discovery Could Solve This Mystery About Our Expanding Universe 
       Gizmodo, Oct 2017 [link]

36.  Virgo bags its first gravitational waves 
       Physics World, Sep 2017 [link]

35.  A New Gravitational Wave Detector Makes Its First Discovery 
       Gizmodo, Sep 2017 [link]

34.  Gravitational Waves Reveal the Unexpectedly Weird Behavior of Distant Black Holes 
       Gizmodo, Aug 2017 [link]

33.  Infused Antarctic ice could boost neutrino detection 
       Physics World, Jul 2017 [link]

32.  The rise of LIGO's space-studying super-team 
       Symmetry Magazine, Jun 2017 [link]

31.  The Hunt for Gravitational Waves Is Officially Headed to Space 
       Gizmodo, Jun 2017 [link]

30.  Teen Scientists Do Real Science at American Museum of Natural History 
       Black Enterprise, Jun 2017 [link]

29.  Urban High School Students Present Original Science Research 
       Diverse: Issues in Higher Education, Jun 2017 [link]

28.  Physicists Just Spotted Gravitational Waves Again --- So What's Next? 
       Gizmodo, Jun 2017 [link]

27.  Hatalmas eredmény a csillagászatban: újra észlelték az Einstein által megjósolt gravitációs hullámokat (in Hungarian)
       HVG, Jun 2017 [link]

26.  Tartós ablak a világmindenségre - megint észlelték az Einstein-hullámokat (TV, in Hungarian)
       Hirado, Jun 2017 [link]

25.  No neutrinos from black hole smash 
       Nature Research Highlights, Jul 2016 [link]

24.  Gravitational waves are teaching scientists the 'native language' of black holes 
       Tech Insider, Jun 2016 [link]

23.  More than 1,000 physicists just proved Albert Einstein wrong again 
       Tech Insider, Jun 2016 [link]

22.  A News Flash From Deep Space, Mar 2016 [link]

21.  Neil deGrasse Tyson at our press conference, Feb 2016 [link]

20.  The Future of Gravitational Wave Astronomy 
       Scientific American, Feb 2016 [link]

19.  Gravitational Waves Discovered from Colliding Black Holes 
       Scientific American, Feb 2016 [link]

18.  Einstein's weirdest prediction is true --- and will soon radically transform our understanding of the universe 
       Tech Insider, Feb 2016 [link]

17.  Einstein's wildest prediction could be confirmed within days 
       Tech Insider, Feb 2016 [link]

16.  Hunting black holes with a gas cloud
       National Science Foundation Highlight, 2014

15.  A moment after the Big Bang (in Hungarian)
       Magyar Nemzet, Mar 2014

14.  But deliver us from evil (in Hungarian)
       Magyar Narancs, Nov 2013 [link]

13.  Hungarian physicists hunt for black holes (in Hungarian)
       Index, June 2013 [link]

12.  Monster gas cloud could unveil Milky Way's black-hole hub 
       Physics World, Jun 2013 [link]

11.  Researchers suggest gas cloud could reveal black holes near center of Milky Way galaxy, Jun 2013 [link]

10.  The search for mini black holes 
       Australian Broadcasting Corporation (ABC), Jun 2013 [link]

  9.  Astronomical gas cloud could finally reveal the truth about black holes at the centre of the galaxy 
       National Post, May 2013 [link]

  8.  Black hole bonanza (radio)
       BBC Science Hour, May 2013 [link]

  7.  Black hole bonanza possible as immense gas cloud passes 
       BBC, May 2013 [link]

  6.  'FlyWalker' tracks insect feet, could advance Parkinson's research 
       Spoonful of Medicine (Nature Medicine), Jan 2013 [link]

  5.  Neutrinobite (in Hungarian)
       Magyar Nemzet Magazine, Jun 2012

  4.  Rising Stars of Science: The Forbes 30 Under 30
       Forbes Magazine, Jan 2012 [link]

  3.  Using A Light Barrier To Repel Mosquitoes
       Forbes, 2011 [link]

  2.  Laser Wall (in Hungarian)
       Termeszet Vilaga, 2011 [link]

  1.  The Applied Physicist
       Superscript, 2011 [link]


  ●    Spring 2019  ---  PHY 3063 Enriched Modern Physics (honors undergrad) [link]

  ●    Fall 2018  ---  PHY 4905 Modern Astrophysics (undergrad) [link]

  ●    Spring 2018  ---  PHY 7097 Modern Astrophysics (grad) [link]